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Abstract

This document describes how to self-align each wafer of the STAR
SVT at small scales using 6 quantities obtained by fitting tracks to only
the SVT points and a primary vertex: the 2 components of the local
wafer coordinates of the hit from the track (A, B), the residuals from the
fit to the hit position (∆Aobs, ∆Bobs), and 2 quantities which describe the
directionality of the fit track through the wafer. Relative calibration of
the drift velocities of each hybrid on a wafer may also be extracted. Two
additional quantities representing the resolutions of measuring A and B

may also be necessary.

1 Introduction

In pursuit of calibrating the alignment of SVT wafers to the maximal precision,
it is best to exclude the use of any other detectors which may bias or degrade
the calibration. To this end, it appears that a self-alignment procedure using
only hits in the SVT is optimal. This can be done using residuals of hits made
by particle tracks passing through the wafers. Doing so with helical tracks
(in a magnetic field) means that it is necessary to have at least 4 points on a
track to prevent over-constraint of the helical fit (3 points defines a circle in the
transverse plane, leaving no residuals in that plane). This can be accomplished
using hits in all 3 layers of the SVT along with a precise primary vertex point.

The proposed method is to use tracks from the STAR TPC to locate SVT
hits which belong to primary tracks, along with a primary vertex. Where 3 SVT
hits are found, those hits and the primary vertex are then re-fit to a helix, and
the residuals to SVT hits are used in the technique which we will describe here.
We will utilize linear approximations to several dependencies between observable
quantities and the related alignment parameters, so it is a requirement that any
existing misalignments must be very small. If they are not, iterating the method
may be necessary. Use of the same technique in the CMS experiment shows that
convergence is mostly achieved after a single iteration, but that 3-4 iterations
complete the calibration [1].
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It should be explicitly stated at this point that this technique has only one
weak constraint to prevent it from altering the global rotation of the SVT: the
use of multiple events with a significant spread in primary vertex locations which
serve as fixed references to the global coordinate system (this is not sufficiently
true in the transverse plane). Otherwise, the χ2 minimization used in this tech-
nique has the potential to rotate the entire system. It is therefore recommended
that a global alignment procedure be done before this self-alignment procedure,
and checked again afterwards. It is also necessary to use a selection of many
events with varied primary vertex locations (at least in longitude), and that the
tracks used in calibrating each wafer cross a variety of other wafers (to avoid
calibrating a subset of wafers without constraint to the full SVT).

Performing this calibration in STAR with straight tracks in zero magnetic
field has been previously proposed [2]. However, using helical tracks with the
magnetic field on is beneficial in allowing a selection of tracks with high enough
momentum to discard those which might have large multiple scattering contri-
butions. Curved tracks also provide for a slightly greater distribution of track
trajectories through wafers, increasing the number of possible wafer combina-
tions and lengthening the lever arm of incident angles to wafers (which we will
see later is necessary for calibrations normal to the surface of the wafers), al-
though the highest curvature tracks (lowest transverse momentum) are the ones
removed for multiple scattering minimization.

It is also worthwhile to note that we see nothing to prevent inclusion of the
STAR SSD in this procedure.

2 Coordinates

In STAR global coordinates, an SVT hit is defined as:

~h = ~x + Ad̂ + Bt̂ (1)

The vector ~x is the global position of the center of the wafer, d̂ is the drift
direction within the wafer, and t̂ is the the direction transverse to the drift but
in the plane of the wafer. The SVT group also defines n̂ which is the normal
vector to the surface of the wafer. Here, t̂ = d̂ × n̂. A and B are the SVT
measures of the hit location in the plane of the wafer (the d̂t̂ plane).

We define the global coordinates in which ~x, d̂, n̂, t̂ are stored in the database
to be î, ĵ, k̂ to avoid confusion over the definition of x. But we choose to work
in the wafer coordinate space d̂, n̂, t̂ for simplicity in our solution. To convert ~x
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back and forth between the global and wafer coordinate spaces, we have

d̂ = di î + dj ĵ + dkk̂ (2)

n̂ = niî + nj ĵ + nkk̂ (3)

t̂ = tiî + tj ĵ + tkk̂ (4)

~x = xi î + xj ĵ + xkk̂ (5)

= xdd̂ + xnn̂ + xtt̂ (6)

= (~x · d̂)d̂ + (~x · n̂)n̂ + (~x · t̂)t̂ (7)

=

(xi ∗ di + xj ∗ dj + xk ∗ dk)d̂

+ (xi ∗ ni + xj ∗ nj + xk ∗ nk)n̂

+ (xi ∗ ti + xj ∗ tj + xk ∗ tk)t̂

(8)

One should understand that ~x is a vector from the origin of the global coordinate
space to the origin of the wafer coordinate space, so it is not necessary for any
of xd, xn, xt, xi, xj , xk to be zero, and the magnitude |~x| should be the same in

either coordinate space. Using id = (̂i · d̂) = (d̂ · î) = di, etc., we can also write

~x = (~x · î)̂i + (~x · ĵ)ĵ + (~x · k̂)k̂ (9)

=

(xd ∗ id + xn ∗ in + xt ∗ it)d̂

+ (xd ∗ jd + xn ∗ jn + xt ∗ jt)n̂

+ (xd ∗ kd + xn ∗ kn + xt ∗ kt)t̂

(10)

=

(xd ∗ di + xn ∗ ni + xt ∗ ti)d̂

+ (xd ∗ dj + xn ∗ nj + xt ∗ tj)n̂

+ (xd ∗ dk + xn ∗ nk + xt ∗ tk)t̂

(11)

3 Small shifts

3.1 Rotations

We can envision rotations of the wafer on each of the three axes d̂, n̂, t̂ about
the center of the wafer. The associated small rotation angles we shall call
δφd, δφn, δφt and we can treat them independently to first order.

For each small rotation of the plane, the vector to the hit from the center of
the plane (~h − ~x = Ad̂ + Bt̂) is rotated by a matrix:

Rδφ =

(

cos(δφ) sin(δφ)
−sin(δφ) cos(δφ)

)

≈

(

1 δφ
−δφ 1

)

(12)

For each of the small rotations, we apply the rotation to the projection of Ad̂+Bt̂
which lies in the plane being rotated. So, for the rotation of ∆~hδφd

about the d̂
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t r a c kr e a l w a f e r
r e c o n s t r u c t e dδ h = ( � A , 0 , � B )

n dt( d , n , t ) � s p a c e :
r e c o n s t r u c t e d w a f e r

r e a lh = ( A , 0 , B )
Figure 1: Example of real and reconstructed hit positions and track propagation in
the wafer coordinate system. Dashed arrows represent the small shift transformation.

axis, we use the projection to the n̂t̂ plane, etc., as follows:

I ≡

(

1 0
0 1

)

∆~hδφd
= (Rδφd

− I)

(

0
B

)

n̂
t̂

=

(

Bδφd

0

)

n̂
t̂

(13)

∆~hδφn
= (Rδφn

− I)

(

B
A

)

t̂

d̂
=

(

Aδφn

−Bδφn

)

t̂

d̂
(14)

∆~hδφt
= (Rδφt

− I)

(

A
0

)

d̂
n̂

=

(

0
−Aδφt

)

d̂
n̂

(15)

Some of these cause out-of-plane shifts with respect to the wafer, and we will
handle this later in Section 3.3.

The result of all rotations is then the linear sum:

∆~hrotations = ∆~hδφd
+ ∆~hδφn

+ ∆~hδφt
(16)

= (−Bδφn)d̂ + (−Aδφt + Bδφd)n̂ + (Aδφn)t̂ (17)

For completeness, in this linear approximation one could have alternately
written these three rotation matrices as a single 3x3 matrix as follows:

R′ ≈





1 δφt −δφn

−δφt 1 δφd

δφn −δφd 1



 , I ′ ≡





1 0 0
0 1 0
0 0 1



 (18)

∆~hrotations = (R′ − I ′)





A
0
B





d̂
n̂
t̂

=





−Bδφn

−Aδφt + Bδφd

Aδφn





d̂
n̂
t̂

(19)

Such 3x3 matrices are often written with the opposite sign on δφn, but the
notation used here is necessary to be consistent with how it was written in
Equation 14.
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3.2 Translations

We label the small translation shifts to the wafer plane as δxd, δxn, δxt. These
yield 1-to-1 corresponding shifts in the hit reconstruction.

∆~htranslations = (−δxd)d̂ + (−δxn)n̂ + (−δxt)t̂ (20)

Summing the rotations and translations gives:

∆~h = ∆~hrotations + ∆~htranslations (21)

= (−Bδφn − δxd)d̂ + (−Aδφt + Bδφd − δxn)n̂ + (Aδφn − δxt)t̂(22)

3.3 Projecting to the wafer

Unfortunately, the reconstructed hit must be within the plane of the wafer, so
we cannot see shifts in the n̂ direction directly. If we assume the particle track
to be linear (which should be a valid approximation for the small distances with
which we are working here), then any shift S of the wafer in the n̂ direction

will lead to a shift of the reconstructed hit in the d̂ and t̂ directions by amounts
proportional to the tangents of the angles θdn, θtn between the track vector ~v
and the normal vector n̂ in the d̂n̂ and t̂n̂ planes. The projection of a shift
~S = Sn̂ thus reconstructs as:

~v = vdd̂ + vnn̂ + vtt̂ (23)

vdn = tanθdn = vd/vn (24)

vtn = tanθtn = vt/vn (25)

~S = Sn̂ =⇒ (−vdnS)d̂ + (−vtnS)t̂ (26)

where vd, vn, vt can be obtained from vi, vj , vk just as in Equation 8. In our
case, the shift in the n̂ direction, which includes both that due to translations
and rotations is shown in Equation 22 as the n̂ component of the full shift
∆~h (S = −Aδφt + Bδφd − δxn). Note that tracks which are normal to the
wafers (vdn, vtn ≈ 0) offer little resolving power for shifts in the n̂ direction (and
therefore to δφt, δφd, and δxn shifts), which is one of the reasons we benefit
from using curved tracks and a wide distribution of primary vertices. After
projecting, the reconstructed hit is then actually seen as:

∆~hreco =
(−Bδφn − δxd + vdn(Aδφt − Bδφd + δxn))d̂

+ (Aδφn − δxt + vtn(Aδφt − Bδφd + δxn))t̂
(27)

= (∆A)d̂ + (∆B)t̂ (28)

where we use

∆A = −Bδφn − δxd + vdn[Aδφt − Bδφd + δxn] (29)

∆B = Aδφn − δxt + vtn[Aδφt − Bδφd + δxn] (30)

A more formal and rigorous derivation of the dependence of observables on
shift quantities is provided in Appendix A.
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3.4 Drift Velocities

Additional shifting of hits can result from incorrect drift velocities. These are
independent for the two hybrids on a wafer, and are thus two independent
quantities. We should more technically write:

A = −(Amax − tν1)δhyb,1 + (Amax − tν2)δhyb,2 (31)

using the two drift velocities ν1 and ν2 for hybrids 1 and 2 respectively (where
hybrid 1 corresponds to A < 0), t is the hybrid time bin in which the hit was
measured, A is the maximum drift length (understood to be Amax = 3.0cm),
and δhyb,1 and δhyb,2 are Kronecker deltas for the hit to be on hybrid 1 or 2 .
We shall call the deviation in drift velocities δν1 and δν2, and define δµ1, δµ2:

∆~hvelocities = [−(δν1/ν1)(Amax + A)δhyb,1 + (δν2/ν2)(Amax − A)δhyb,2]d̂

≡ [−δµ1(Amax + A)δhyb,1 + δµ2(Amax − A)δhyb,2]d̂ (32)

In reality, deviations in the drift velocities will also distort the observations
of some of the other shifts. But we have chosen to work only with first order
distortions for this method, so higher order terms will be neglected for now in
the expectation that iteration will achieve the desired accuracy.

Our reconstructed hit is now described with Equations 28, 30, and:

∆A = −Bδφn − δxd + vdn[Aδφt − Bδφd + δxn]

−δµ1(Amax + A)δhyb,1 + δµ2(Amax − A)δhyb,2 (33)

4 Solution

To find the solution, we need to fit the observed shifts (residuals) with the
optimal parameterized small shifts discussed in Section 3. Let’s call the observed
shift ∆~hobs and the true shift within our parameterized model ∆~hmodel. One
might consider minimizing the variance V :

V =
∑

l

(

∣

∣

∣∆~hobs − ∆~hmodel

∣

∣

∣

2
)

(34)

=
∑

l

(

(∆Aobs − ∆Amodel)
2 + (∆Bobs − ∆Bmodel)

2
)

(35)

=
∑

l

(

∆A2
o−m + ∆B2

o−m

)

(36)

where

∆Ao−m = (∆Aobs − ∆Amodel) , ∆Bo−m = (∆Bobs − ∆Bmodel) (37)

and we sum over l tracks (from many events, as stipulated in Section 1) to
get V , with the measured quantities A, B, ∆Aobs, ∆Bobs, vdn, and vtn varying
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for each track. However, this makes the assumption that the measurements in
the d̂ and t̂ directions have the same resolution, and that those resolutions are
identical for every track l. This is not necessarily so. Instead of minimizing the
variance in absolute distance, it is more appropriate to minimize the variance
normalized to the measurement resolution in each direction for each track used,
which is equivalent to χ2. Thus, we will use:

χ2 =
∑

l

((

∆A2
o−m

σ2
d

)

+

(

∆B2
o−m

σ2
t

))

(38)

and we will need to determine σ2
d and σ2

t for use in our calculations (unless
it is shown that σ2

d = σ2
t for all tracks, in which case they can be dropped

from our formulas). It might at least be possible to assume that σ2
d and σ2

t are
constants; we will not address that here, but the need to determine these on a
track-by-track basis is something which should be considered.

To find the best parameters for our model, we must minimize χ2 with respect
to each small shift parameter (minimizing the difference between the observa-
tions and the model) by taking the partial derivative with respect to each pa-
rameter and setting it equal to zero. This will give us eight equations from each
of the eight partial derivatives with respect to the eight unknown quantities.

So for each shift parameter δq, we have:

∂χ2

∂δq
=

∑

l

((

2∆Ao−m

σ2
d

∂∆Ao−m

∂δq

)

+

(

2∆Bo−m

σ2
t

∂∆Bo−m

∂δq

))

(39)

=
∑

l

((

−2∆Ao−m

σ2
d

∂∆Amodel

∂δq

)

+

(

−2∆Bo−m

σ2
t

∂∆Bmodel

∂δq

))

(40)

We can drop the constant factors of -2 when setting equal to zero, giving us:

∂χ2

∂δφd

= 0 =
∑

l

((

vdnB∆Ao−m

σ2
d

)

+
(

vtnB∆Bo−m

σ2
t

))

(41)

∂χ2

∂δφn

= 0 =
∑

l

((

−B∆Ao−m

σ2
d

)

+
(

A∆Bo−m

σ2
t

))

(42)

∂χ2

∂δφt

= 0 =
∑

l

((

vdnA∆Ao−m

σ2
d

)

+
(

vtnA∆Bo−m

σ2
t

))

(43)

∂χ2

∂δxd

= 0 =
∑

l

(

−∆Ao−m

σ2
d

)

(44)

∂χ2

∂δxn

= 0 =
∑

l

((

vdn∆Ao−m

σ2
d

)

+
(

vtn∆Bo−m

σ2
t

))

(45)

∂χ2

∂δxt

= 0 =
∑

l

(

−∆Bo−m

σ2
t

)

(46)

∂χ2

∂δµ1
= 0 =

∑

l

(

−
(Amax+A)δhyb,1∆Ao−m

σ2
d

)

(47)

∂χ2

∂δµ2
= 0 =

∑

l

(

(Amax−A)δhyb,2∆Ao−m

σ2
d

)

(48)
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This linear system of equations can be written in matrix form as shown in
Appendix B, where we have multiplied Equation 41 by -1 to obtain a symmetric
matrix. Solving this system of equations for the eight unknown quantities is
straightforward using any of a number of techniques (matrix inversion, gaussian
elimination, etc.). Alternative uses of the matrix are discussed in Appendix D.

5 Final values

Once we have solved for the eight unknowns (δφd, δφn, δφt, δxd, δxn, δxt, δµ1, δµ2)

for each wafer, we can determine the new values of ~x′, d̂′, n̂′, t̂′ for the database.
Defining ∆~hreco to be the position of the reconstructed hit minus the position
of the track (see Appendix C), ~x in wafer coordinates becomes:

~x′ = (xd + δxd)d̂ + (xn + δxn)n̂ + (xt + δxt)t̂ (49)

To obtain ~x′ in global coordinates, for the database, we apply Equation 11. For
the rotations, we proceed using:

~d′ = d̂ − δφn t̂ + δφtn̂ (50)

~n′ = n̂ − δφtd̂ + δφdt̂ (51)

~t′ = t̂ − δφdn̂ + δφnd̂ (52)

This math can be done in global coordinates. To first order, this will retain
the unitarity of ~d′, ~n′,~t′, but if this calibration is done repeatedly, the small
deviations from unitarity may become less negligible. Therefore, it is prudent
at this point to renormalize by dividing each by their magnitude:

d̂′ = ~d′/|~d′| (53)

n̂′ = ~n′/|~n′| (54)

t̂′ = ~t′/|~t′| (55)

And lastly we modify the drift velocities:

ν′
1 = ν1(1 + δµ1) (56)

ν′
2 = ν2(1 + δµ2) (57)

We then enter ~x′, d̂′, n̂′, t̂′ for each wafer, and ν′
1, ν

′
2 for each hybrid into the

database.
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A Formal derivation of shift observables

To be included...

9



B
S
o
lu

tio
n

m
a
tr

ix

∑

l









































(

v2
dnB2

σ2
d

+
v2

tnB2

σ2
t

) (

vdnB2

σ2
d

− vtnAB
σ2

t

) (

−v2
dnAB

σ2
d

+
−v2

tnAB

σ2
t

) (

vdnB
σ2

d

) (

−v2
dnB

σ2
d

+
−v2

tnB

σ2
t

)

(

vdnB2

σ2
d

− vtnAB
σ2

t

) (

B2

σ2
d

+ A2

σ2
t

) (

−vdnAB
σ2

d

+ vtnA2

σ2
t

) (

B
σ2

d

) (

−vdnB
σ2

d

+ vtnA
σ2

t

)

(

−v2
dnAB

σ2
d

+
−v2

tnAB

σ2
t

) (

−vdnAB
σ2

d

+ vtnA2

σ2
t

) (

v2
dnA2

σ2
d

+
v2

tnA2

σ2
t

) (

− vdnA
σ2

d

) (

v2
dnA

σ2
d

+
v2

tnA

σ2
t

)

(

vdnB
σ2

d

) (

B
σ2

d

) (

− vdnA
σ2

d

) (

1
σ2

d

) (

− vdn

σ2
d

)

(

−v2
dnB

σ2
d

+
−v2

tnB

σ2
t

) (

−vdnB
σ2

d

+ vtnA
σ2

t

) (

v2
dnA

σ2
d

+
v2

tnA

σ2
t

) (

− vdn

σ2
d

) (

v2
dn

σ2
d

+
v2

tn

σ2
t

)

(

vtnB
σ2

t

) (

− A
σ2

t

) (

− vtnA
σ2

t

)

(0)
(

− vtn

σ2
t

)

(

vdnB(Amax+A)δhyb,1

σ2
d

) (

B(Amax+A)δhyb,1

σ2
d

) (

−
vdnA(Amax+A)δhyb,1

σ2
d

) (

(Amax+A)δhyb,1

σ2
d

) (

−
vdn(Amax+A)δhyb,1

σ2
d

)

(

−
vdnB(Amax−A)δhyb,2

σ2
d

) (

−
B(Amax−A)δhyb,2

σ2
d

) (

vdnA(Amax−A)δhyb,2

σ2
d

) (

−
(Amax−A)δhyb,2

σ2
d

) (

vdn(Amax−A)δhyb,2

σ2
d

)

(

vtnB
σ2

t

) (

vdnB(Amax+A)δhyb,1

σ2
d

) (

−
vdnB(Amax−A)δhyb,2

σ2
d

)

(

− A
σ2

t

) (

B(Amax+A)δhyb,1

σ2
d

) (

−
B(Amax−A)δhyb,2

σ2
d

)

(

− vtnA
σ2

t

) (

−
vdnA(Amax+A)δhyb,1

σ2
d

) (

vdnA(Amax−A)δhyb,2

σ2
d

)

(0)
(

(Amax+A)δhyb,1

σ2
d

) (

−
(Amax−A)δhyb,2

σ2
d

)

(

− vtn

σ2
t

) (

−
vdn(Amax+A)δhyb,1

σ2
d

) (

vdn(Amax−A)δhyb,2

σ2
d

)

(

1
σ2

t

)

(0) (0)

(0)
(

(Amax+A)2δhyb,1

σ2
d

)

(0)

(0) (0)
(

(Amax−A)2δhyb,2

σ2
d

)

































































δφd

δφn

δφt

δxd

δxn

δxt

δµ1

δµ2

























=
∑

l









































(

−vdnB∆Aobs

σ2
d

+ −vtnB∆Bobs

σ2
t

)

(

−B∆Aobs

σ2
d

+ A∆Bobs

σ2
t

)

(

vdnA∆Aobs

σ2
d

+ vtnA∆Bobs

σ2
t

)

(

−∆Aobs

σ2
d

)

(

vdn∆Aobs

σ2
d

+ vtn∆Bobs

σ2
t

)

(

−∆Bobs

σ2
t

)

(

−
∆Aobs(Amax+A)δhyb,1

σ2
d

)

(

∆Aobs(Amax−A)δhyb,2

σ2
d

)









































(58)

1
0



We can rewrite these for programming purposes as

























M00 M01 M02 M03 M04 M05 M06 M07

M10 M11 M12 M13 M14 M15 M16 M17

M20 M21 M22 M23 M24 M25 M26 M27

M30 M31 M32 M33 M34 M35 M36 M37

M40 M41 M42 M43 M44 M45 M46 M47

M50 M51 M52 M53 M54 M55 M56 M57

M60 M61 M62 M63 M64 M65 M66 M67

M70 M71 M72 M73 M74 M75 M76 M77

















































δφd

δφn

δφt

δxd

δxn

δxt

δµ1

δµ2

























=

























V0

V1

V2

V3

V4

V5

V6

V7

























(59)

where we use the following definitions:

Useful per track (l) quantities:







































































C0 = 1/σ2
d D0 = 1/σ2

t

C1 = vdnC0 D1 = vtnD0

C2 = AC1 D2 = AD1

C3 = BC1 D3 = BD1

C4 = BC0 D4 = AD0

E0 = vdnC3 + vtnD3

E1 = vdnC2 + vtnD2

E2 = D2 − C3

F0 = (A + Amax) F1 = (A −Amax)
F2 = F0C0δhyb,1 F3 = F1C0δhyb,2

F4 = vdnF2 F5 = vdnF3







































































M00 =
∑

l (BE0)
M01 =

∑

l (−BE2)
M02 =

∑

l (−AE0)
M03 =

∑

l (C3)
M04 =

∑

l (−E0)
M05 =

∑

l (D3)
M06 =

∑

l (BF4)
M07 =

∑

l (BF5)
M11 =

∑

l (BC4 + AD4)
M12 =

∑

l (AE2)
M13 =

∑

l (C4)
M15 =

∑

l (−D4)
M16 =

∑

l (BF2)
M17 =

∑

l (BF3)
M66 =

∑

l (F0F2)
M77 =

∑

l (F1F3)

M22 =
∑

l (AE1)
M23 =

∑

l (−C2)
M24 =

∑

l (E1)
M25 =

∑

l (−D2)
M26 =

∑

l (−AF4)
M27 =

∑

l (−AF5)
M33 =

∑

l (C0)
M34 =

∑

l (−C1)
M36 =

∑

l (F2)
M37 =

∑

l (F3)
M44 =

∑

l (vdnC1 + vtnD1)
M45 =

∑

l (−D1)
M46 =

∑

l (−F4)
M47 =

∑

l (−F5)
M55 =

∑

l (D0)

M14 = −M03 − M25

M35 = M53 = M56 = M65 = M57 = M75 = M67 = M76 = 0
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M10 = M01 M20 = M02 M21 = M12 M30 = M03 M31 = M13

M32 = M23 M40 = M04 M41 = M14 M42 = M24 M43 = M34

M50 = M05 M51 = M15 M52 = M25 M54 = M45 M60 = M06

M61 = M16 M62 = M26 M63 = M36 M64 = M46 M70 = M07

M71 = M17 M72 = M27 M73 = M37 M74 = M47

V0 =
∑

l (∆AobsC3 + ∆BobsD3)
V1 =

∑

l (−∆AobsC4 + ∆BobsD4)
V2 =

∑

l (∆AobsC2 + ∆BobsD2)
V3 =

∑

l (−∆AobsC0)
V4 =

∑

l (∆AobsC1 + ∆BobsD1)
V5 =

∑

l (−∆BobsD0)
V6 =

∑

l (−∆AobsF2)
V7 =

∑

l (−∆AobsF3)

Only 39 running sums need to be calculated for each wafer while looping over
all tracks to obtain the final matrix and vector for that wafer.

C Sign check on shifts

To make sure we add or subtract the shift quantities properly when correcting
the database quantities, a quick test is performed here using simple shifts and
Equations 1, 28, 30, and 33 to obtain the difference between the reconstructed
∆~hreco and the ideal one with ∆~h′ ≡ 0.

A very simple translation shift in the d̂ direction (allowing us to ignore the
n̂ and t̂ quantities) gives:

∆~hreco = ~hhit − ~htrack = (Ad̂ + ~x) − ~htrack = ∆Ad̂

= −δxdd̂

∆~h′ = (Ad̂ + ~x′) − ~htrack ≡ 0

∆~h′ − ∆~hreco = ~x′ − ~x = δxdd̂

~x′ = ~x + δxdd̂
x′

d = xd + δxd

This can be repeated for the other translations to give Equation 49.
For rotations, it is again easiest to take a simple case of a rotation about the

n̂ axis and extrapolate to the other rotations, this time ignoring n̂ quantities:

∆~hreco = ~hhit − ~htrack = (Ad̂ + Bt̂) − ~htrack = ∆Ad̂ + ∆Bt̂

= −Bδφnd̂ + Aδφn t̂

∆~h′ = (Ad̂′ + Bt̂′) − ~htrack ≡ 0

∆~h′ − ∆~hreco = A(d̂′ − d̂) + B(t̂′ − t̂) = Bδφnd̂ − Aδφn t̂

d̂′ − d̂ = −δφnt̂

d̂′ = d̂ − δφn t̂

t̂′ − t̂ = δφnd̂

t̂′ = t̂ + δφnd̂

Again, this can be repeated for the other rotations, implying Equations 50-52.

12



Lastly, for drift velocity deviations, we use the simple case of an offset for
hybrid 2 (δhyb,1 = 0, δhyb,2 = 1):

∆~hreco = ~hhit − ~htrack = (Amax − tν2)d̂ − ~htrack = ∆Ad̂

= δµ2(Amax − A)d̂

∆~h′ = (Amax − tν′
2)d̂ − ~htrack ≡ 0

∆~h′ − ∆~hreco = −t(ν′
2 − ν2)d̂ = −δµ2(Amax − A)d̂

ν′
2 = ν2 + δµ2(Amax − A)/t

= ν2 + δµ2(ν2)
= ν2(1 + δµ2)

The same derivation can be done for hybrid 1, resulting in Equations 56 and 57.

D Alternative applications

D.1 Alignment without sensitivity to n̂ shifts

If the tracks used in the alignment procedure do not cross the wafer planes
with sufficient diversity of angles vdn and vtn, sensitivity of the χ2 to the shifts
δxn, δφt, δφd is lost. It may be better under such circumstances to constrain
the wafers with zero values for these shifts than to allow the minimization the
opportunity to walk the wafers in an attempt to find the best solution. Doing
so is straightforward and involves reducing the matrix and vectors to only five
rows and columns, removing anything associated with δxn, δφt, δφd, vdn, vtn.
Equation 59 becomes (needing only 16 running sums):













M00 M01 M02 M03 M04

M10 M11 M12 M13 M14

M20 M21 M22 M23 M24

M30 M31 M32 M33 M34

M40 M41 M42 M43 M44

























δφn

δxd

δxt

δµ1

δµ2













=













V0

V1

V2

V3

V4













(60)

M00 =
∑

l (BC4 + AD4)
M01 =

∑

l (C4)
M02 =

∑

l (−D4)
M03 =

∑

l (BF2)
M04 =

∑

l (BF3)

M11 =
∑

l (C0)
M13 =

∑

l (F2)
M14 =

∑

l (F3)
M22 =

∑

l (D0)
M33 =

∑

l (F0F2)
M44 =

∑

l (F1F3)

M12 = M21 = M23 = M32 = M24 = M42 = M34 = M43 = 0

M10 = M01 M20 = M02 M21 = M12 M30 = M03 M31 = M13

M32 = M23 M40 = M04 M41 = M14 M42 = M24 M43 = M34

V0 =
∑

l (−∆AobsC4 + ∆BobsD4)
V1 =

∑

l (−∆AobsC0)
V2 =

∑

l (−∆BobsD0)
V3 =

∑

l (−∆AobsF2)
V4 =

∑

l (−∆AobsF3)
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D.2 Ladder alignment in wafer-like coordinates

If we treat all wafers in a ladder as having the same alignment vectors d̂, n̂, t̂ and
consider ~x to be the position of the center of the ladder, then an alignment of
the ladder position within those coordinates requires only a small modification
from the individual wafer alignments. For the ladder, the measurement in the
t̂ direction becomes Z instead of B. The other necessary change is what to
do about drift velocities. There are many choices, of which four seem useful:
1) ignore drift velocity deviations; 2) determine some average δµ1, δµ2 for the
ladder; 3) same as option 2, but collapse all hybrids to one δµ; and 4) expand
the equations to include every hybrid on the ladder.

Options 2-4 are discussed below. The simple case of option 1 is detailed here
as an example. Equation 59 becomes as follows (with 25 running sums):

















M00 M01 M02 M03 M04 M05

M10 M11 M12 M13 M14 M15

M20 M21 M22 M23 M24 M25

M30 M31 M32 M33 M34 M35

M40 M41 M42 M43 M44 M45

M50 M51 M52 M53 M54 M55

































δφd

δφn

δφt

δxd

δxn

δxt

















=

















V0

V1

V2

V3

V4

V5

















(61)

Changed per track (l) quantities:
{

C3 = ZC1 D3 = ZD1 C4 = ZC0

}

M00 =
∑

l (ZE0)
M01 =

∑

l (−ZE2)
M02 =

∑

l (−AE0)
M03 =

∑

l (C3)
M04 =

∑

l (−E0)
M05 =

∑

l (D3)
M11 =

∑

l (ZC4 + AD4)
M12 =

∑

l (AE2)
M13 =

∑

l (C4)
M15 =

∑

l (−D4)

M22 =
∑

l (AE1)
M23 =

∑

l (−C2)
M24 =

∑

l (E1)
M25 =

∑

l (−D2)
M33 =

∑

l (C0)
M34 =

∑

l (−C1)
M44 =

∑

l (vdnC1 + vtnD1)
M45 =

∑

l (−D1)
M55 =

∑

l (D0)

M14 = −M03 − M25

M35 = M53 = 0

M10 = M01 M20 = M02 M21 = M12 M30 = M03 M31 = M13

M32 = M23 M40 = M04 M41 = M14 M42 = M24 M43 = M34

M50 = M05 M51 = M15 M52 = M25 M54 = M45

V0 =
∑

l (∆AobsC3 + ∆ZobsD3)
V1 =

∑

l (−∆AobsC4 + ∆ZobsD4)
V2 =

∑

l (∆AobsC2 + ∆ZobsD2)
V3 =

∑

l (−∆AobsC0)
V4 =

∑

l (∆AobsC1 + ∆ZobsD1)
V5 =

∑

l (−∆ZobsD0)

Option 2 is as in Appendix B with the Z-for-B switch. Option 3 may be
preferable to option 2 if one chooses the average drift velocities approach because
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it reduces possible ambiguities in ∆Amodel between drift velocities and certain
rotations plus translations. For example,

∆Amodel = −δµ1(Amax + A) = α + βA

∆Amodel = −δxd + vdnAδφt ≈ α + βA

when vdn ≈ 1, which is probably generally true for the available tracks. The two
rows and columns associated with δµ1, δµ2 in Appendix B are replaced with a
single set for δµ with

F0 = (A − (δhyb,2 − δhyb,1)Amax) (62)

F2 = F0C0 (63)

F1, F3, F5 become obsolete.
Option 4 is more complex as ladders on each barrel will have different num-

bers of parameters, depending upon the number of wafers on each ladder. Essen-
tially, the columns and rows for δµ1, δµ2 are repeated for the hybrid pairs from
each wafer w (δµw1, δµw2). The bottom right corner of the matrix (columns
and rows beyond the first 6) is all zeros except for the diagonal elements:

w = 0...n
h = 1, 2

F2,w = F0C0δhyb,1δwafer,w

F3,w = F1C0δhyb,2δwafer,w

F4,w = vdnF2,w

F5,w = vdnF3,w

Mi,j = 0 for i 6= j, i > 5, j > 5
Mi,i =

∑

l (Fh−1Fh+1,w) for i = 5 + 2w + h
Vi =

∑

l (−∆AobsF1+h,w) for i = 5 + 2w + h

Similarly, the cross terms in the bottom left and top right of the matrix are as
in Appendix B, replacing F2−5 with F2−5,w as appropriate:

Mi,j = Mi,5+h|F2−5→F2,w−5,w
for i ≤ 5, j = 5 + 2w + h

Mi,j = M5+h,j|F2−5→F2w,−5,w
for j ≤ 5, i = 5 + 2w + h
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